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ABSTRACT

Glucocorticoids are known to influence many aspects of pre-
natal development. Three important regulators of glucocorticoid
actions at the cellular level are the enzymes 11p3-hydroxysteroid
dehydrogenase type 1 (11BHSD-1), 11B-hydroxysteroid dehy-
drogenase type 2 (11BHSD-2), and glucocorticoid receptors
(GR). The present study was conducted to determine the pres-
ence of these regulators in porcine placentae during early ges-
tation (Days 24-40; term = 114 days) and to examine the influ-
ence of breed and uterine environment. Three pig models dif-
fering in uterine environment as reflected by embryonic survival
from Days 24 to 40 were used: intact white cross-bred gilts
(WC-INT); white cross-bred gilts that had been unilaterally hys-
terectomized-ovariectomized before puberty (WC-UHO); and
intact Meishan gilts (ME). Porcine-specific partial cDNAs for
11BHSD-1 and 11BHSD-2 and a cRNA for GRa were developed
and used to produce 3?P-labeled probes for Northern blot anal-
yses. The 11BHSD dehydrogenase activity was measured in vitro
at saturating concentrations of substrate and coenzyme. At Day
24 of gestation, 11BHSD-2 mRNA, dehydrogenase activity, and
GR mRNA were present, but 11BHSD-1 mRNA was absent. All
three mRNAs and dehydrogenase activity increased (P < 0.01)
by Day 40. On Day 30, placental 1T1BHSD-2 mRNA was de-
creased (P = 0.03) by 47% in WC-UHO versus WC-INT. Pla-
cental 1T1BHSD dehydrogenase activity was 2-fold greater (P <
0.01) in ME versus WC-INT on Day 24 of gestation. These results
demonstrate, to our knowledge for the first time, the presence
of 1T1BHSD-1, 11BHSD-2, and GR mRNA as well as 11gHSD
dehydrogenase activity in the porcine placenta during early
pregnancy. Moreover, a role for glucocorticoids in porcine em-
bryonic development is suggested.

conceptus, cortisol, developmental biology, embryo, glucocorti-
coid receptor

INTRODUCTION

Multiple mechanisms exist for regulating cellular actions
of glucocorticoids such as cortisol. One such mechanism is
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the enzyme 11B3-hydroxysteroid dehydrogenase (113HSD)
that reversibly converts biologically active cortisol to in-
active cortisone. Two predominant 118HSD isoforms exist:
11BHSD type 1 (11BHSD-1), which has both dehydroge-
nase and oxoreductase activities and uses NADP+ and
NADPH, respectively, as coenzymes [1, 2] but usually acts
as a reductase enzyme [3, 4], and 11BHSD type 2
(11BHSD-2), which has only dehydrogenase activity and
uses NAD™ as a coenzyme [5]. Previous work revealed pla-
cental 11BHSD activity in numerous species (e.g., [6-10]).
We demonstrated with pigs that maternal cortisol was con-
verted to cortisone as it traverses the porcine placenta, and
indeed, maternal cortisol provided 50% of fetal cortisone
during mid and late gestation [11]. We subsequently
showed that this placental cortisol conversion to cortisone
resulted from the presence of NAD*- and NADP*-depen-
dent 11HSD dehydrogenase activities [12]. We also used
placental tissue fragment cultures with endogenous levels
of substrates and coenzymes to show the following at 75
days of gestation: 1) both 11BHSD oxoreductase and de-
hydrogenase activities were present, 2) dehydrogenase ac-
tivity was 5-fold greater than oxoreductase activity, and 3)
significant positive linear associations were present be-
tween net dehydrogenase activity and fetal or placental size
[13].

A second cellular mechanism that regulates biological
effects of glucocorticoids is the glucocorticoid receptor
(GR). In humans, the GR consists of two protein isoforms,
GRa and GRp, with GRa being the biologically relevant
isoform [14, 15]. The GRp isoform is unable to bind glu-
cocorticoid hormones but may form heterodimers with
GRa, thereby altering the ability of GRa to regulate tran-
scription [14, 15]. Thus, although the presence of cortisol
in porcine embryos as early as Day 24 of gestation [16]
suggests that cortisol may influence early embryonic de-
velopment, this is necessary—but not sufficient—evidence
that cortisol is active. The GRs must also be present within
embryonic and placental target tissues for cortisol to exert
its effects.

Therefore, to provide further suggestive evidence for an
action of glucocorticoids on both porcine placental devel-
opment and function and embryonic development, the ob-
jectives of the present study were as follows: 1) to deter-
mine if placental 11BHSD-1 and 11BHSD-2 mRNA ex-
pression and dehydrogenase activity are present in porcine
placentae during early gestation (Days 24, 30, and 40); 2)
to determine if this 11BHSD expression is influenced by
breed and uterine environment; and 3) to determine if
MRNA expression of GR is present in embryonic placentae
at these gestational ages. Because glucocorticoids are
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known to influence placental and fetal size as well as feta
survival in other species (e.g., [17, 18]), it was considered
to be of interest to determine if these cellular mechanisms
regulating cortisol actions might be altered by breed or uter-
ine environments associated with altered fetal size and sur-
vival.

MATERIALS AND METHODS

Animals, Experimental Design, and Tissue Collections

White crossbred (WC) gilts remained intact (INT; n = 17) or were
unilaterally hysterectomized and ovariectomized (UHO; n = 18) at 160
days of age as previously described [19]. Chinese Meishan gilts (ME; n
= 18), which are known for their increased litter size [20], remained intact.
Gilts were randomly assigned to be sampled at Day 24, 30, or 40 of
gestation and were bred as previously described for this study [21]. On
the appropriate day of gestation, gilts were slaughtered in the U.S. De-
partment of Agriculture Meat Animal Research Center abattoir. Reproduc-
tive tracts were removed immediately, and placental samples were ob-
tained as rapidly as possible. Tissue was rapidly frozen in liquid nitrogen
and stored frozen at —80°C until used for 11HSD and GR analyses. All
procedures involving use of animals were reviewed and approved by the
Ingtitutional Animal Care and Use Committee.

Assay Procedures

11BHSD dehydrogenase activity. Detailed assay procedures and vali-
dation for placental 11BHSD dehydrogenase were previously published
[12]. Enzymatic activity was measured in the presence of saturating sub-
strate (2.5 wM unlabeled + 0.86 p.Ci labeled cortisol) and coenzyme (800
wM NAD*) concentrations. Filtered placental homogenates containing
protein concentrations of 450 = 26 pg (mean = SEM) per 100 pl were
prepared as described previously [12]. For the current studies, seven assays
were conducted that each included one replicate from all treatment groups.
The same nonexperimental sample served as an internal standard in each
assay and provided an interassay coefficient of variation (CV) of 23.9%.
All samples were assayed in triplicate (average CV of triplicate determi-
nations = 5.23%), and specific conversion of [1,2,6,7-3H]cortisol (Amer-
sham, Arlington Heights, IL) into labeled cortisone was calculated by sub-
tracting nonspecific conversion in the presence of a heat-denatured pla-
cental preparation from total conversion. Each assay was used as a block-
ing factor in the statistical analysis of enzymatic data. One assay (block)
was repeated once, and the average of the two assays for each sample was
used in subsequent analyses.

Numerous attempts were made to validate procedures for measurement
of 11BHSD oxoreductase activity in homogenates prepared from frozen
tissues. This assay made use of [3H]cortisone and the coenzyme NADPH.
Many steps in the validation (linearity with time, 0—30 min; linearity with
protein concentration, 230-950 p.g protein; optimum pH, 6.0) and deter-
mination of saturating coenzyme (K., = 18.9 wM) concentrations were
accomplished. However, repeatability among experimental assays proved
to be exceptionally poor, casting doubt on the reliability of the data and,
perhaps, reflecting problems that other investigators have experienced us-
ing frozen and stored or homogenized tissues [9, 22]. Hence, no data are
presented for 113HSD oxoreductase activity.

RNA “isolation and Northern blot analyses. Total RNA was isolated
from tissues using RNeasy Kits (Qiagen, Chatsworth, CA). Placental RNA
was loaded onto denaturing MOPS (3-[N-Morpholino] propanesulfonic
acid) 1.25% agarose/formaldehyde gels, and electrophoresis was conduct-
ed. Subsequently RNA was transferred to nylon membranes (Hybond-N;
Amersham) via capillary blotting and was fixed to the membrane using
ultraviolet (UV) cross-linking (UV Stratalinker 2400; Stratagene, La Jolla,
CA). Porcine cDNA for 118HSD-1 was cloned from adult porcine liver,
and cDNA for 11BHSD-2 was cloned from adult kidney. Both cDNAs
were obtained by a modified 3'-rapid amplification of cDNA ends and
cloned into a pBluescript KS vector (Stratagene). Briefly, first-strand
cDNAs were synthesized using an oligo-dT-adapter primer (designed in
house; 5 GTC GAC GGT ACC GAT ATC T17 3') in a total volume of
20 pl. An diquot (2 wl) was then subjected to a standard polymerase
chain reaction (PCR; 94°C, 55 sec; 50°C, 55 sec; 72°C, 2 min; 30 cycles)
by using the adapter primer and a gene-specific primer (5 GGG GGG
TAC CCG GGT AGA AAG CTC TGT AGG 3') that corresponds to
nucleotides 1-20 in the ovine 11HSD-1 cDNA [23] and the primer 5'
CTG AAG CTG CTG CAG ATG GA 3’ that corresponds to nucleotides
405-424 in the murine 11BHSD-2 cDNA [24]. These cDNAs were sub-
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sequently sequenced, determined to be more than 70% homologous with
other mammalian counterparts, and submitted to GenBank (118HSD-1,
accession no. AF 414124, 1348 base pairs [bp]; 11BHSD-2, accession
number AF 414125, 1304 bp). Shorter cDNASs to be used for Northern
blot analyses were generated from these larger cDNAs using, for 113HSD-
1, the forward-primer 5 TTC TGG GGA TCT TCT TGG C 3’ and the
reverse-primer 5 AGT GGA TTC GCC ATT TTC C 3’ and, 11BHSD-2,
the forward-primer 5 GCC AGC AGA CAT TAG CCG 3’ and the re-
verse-primer 5° AAG TAC ATG AGC CCC AGG C 3'. These primer
pairs generated a cDNA for 113HSD-1 that contained a 505-bp fragment
that was 88-90% homologous with other species. Primer pairs for
11BHSD-2 generated a cDNA that contained a 624-bp fragment and was
83-87% homologous with other species. These cDNAs for 11HSD-1 and
11BHSD-2 had no sequence similarity with the other 118HSD isoform.

For the porcine GR, total RNA was isolated from female pig liver.
Reverse transcription was then conducted as previously described [25]
using random nonamer primers (Amersham) to produce cDNA. To amplify
the GR, specific cDNA primers were designed for regions of the human
GRa 3'-untrandlated region [14]. These primers (forward primer, 5’ TTG
GTG CTT CTA ACC TGA TGG 3'; reverse primer, 5 GAT GGG AAT
GTG AAA ATG GG 3') produced a 491-bp cDNA that would be specific
for GRa [14] if the porcine GR is comparable to the human GR. This
sequence was found to be 89.6% homol ogous with human GR 9« (U80946
and X03225) and was submitted to GenBank (accession no. AY 007222).
Porcine cDNA for porcine B-actin was generated, and cDNA were cloned
and sequenced as previously described [25].

For Northern blot analyses, 32P-labelled cDNAs were prepared using
PCR procedures, [32P]dCTP (Dupont New England Nuclear, Wilmington,
DE), and the above-noted primers specific for 113HSD and beta-actin
transcripts. For Northern blot analyses of GR, and for B-actin in the same
Northern blot membrane preparations, cRNAs were prepared, and proce-
dures detailed in Ambion’s MAX I script in vitro transcription kit (Ambion,
Austin, TX) and [«-32P] UTP (Amersham) were used for preparation of
32p-|abelled cRNA probes.

Northern blot analyses using these labeled cDNAs and cRNAs were
conducted essentially as previously described for erythropoietin mRNA
[25]. To insure that variability among processing operations was evenly
distributed across all treatments, RNA from each treatment was equally
represented on each gel/membrane, and membranes were used as a block-
ing factor in statistical analyses. Densitometric measures were conducted
with a Chemlmager (Alpha Innotech Corp., San Leandro, CA), or with
Epi Chemi Darkroom (UVP, Inc., Upland, CA) used in conjunction with
the NIH Image program (National Insitutes of Health, Research Services
Branch, Bethesda, MD. Website at http://rsh.info.nih.gov/nih_image/).

Statistical Analyses

Data for mMRNA and enzymatic activity were analyzed using the Sta-
tistical Analysis System [26]. All data were examined for normality of
distribution (PROC UNIVARIATE NORMAL) and homogeneity of vari-
ance (Fa test) and were transformed to a log or square root function
when necessary to meet assumptions of analysis of variance. Enzymatic
activity (mean of replicate analyses for each sample) was then analyzed
using PROC MIXED and two-way anaysis of covariance (ANOCVA)
with treatments and day of gestation as main factors and assay as arandom
factor. Activity of the internal standard in each assay served as the covar-
iate. All datafor mRNA bands of interest were also analyzed using PROC
MIXED and two-way ANOCVA with treatments and day of gestation as
main factors and gel as a random factor. Each mRNA of interest was
adjusted using ANOCVA and expression of B-actin in the same lane as a
covariate to account for potential differences in lane loading and mem-
brane transfer. Comparisons of individual treatment means were made by
a priori orthogonal contrasts. The least-squares mean = SEM of original
data are presented. A probability level of P = 0.05 was considered to be
significant.

RESULTS

Fetal and placental data for the present study have been
reported elsewhere in detail [21] and will not be repeated
here. A single band of 11BHSD-1 mMRNA was observed at
approximately 1.9 kilobases (kb) (Fig. 1A). Under condi-
tions of the present study, placental mMRNA expression of
11BHSD-1 was undetectable on Day 24 of gestation (Fig.
1A), with the exception of one Meishan fetus. Hence, data
for Day 24 were not included in the statistical analyses (Fig.
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FIG. 1. A) Northern blot analysis of placental 1T1BHSD-1 mRNA ex-
pression at Days 24, 30, and 40 of gestation. Each lane contained 10 g
of total RNA. B) Results of densitometric analysis (Chemlmager; Alpha
Innotech Corp., San Leandro, CA) of steady-state levels of placental
11BHSD-1 mRNA. Values for 11BHSD-1 were adjusted by analysis of
covariance to those of B-actin for the same sample. Results represent the
least-squares mean + SEM of the number of replicates indicated by num-
bers within bars. WC-INT, intact white crossbred gilts; WC-UHO, unilat-
erally-hysterectomized-ovariectomized white crossbred gilts; ME, intact
Meishan gilts.

1B). The 11BHSD-1 mRNA expression was modestly pres-
ent by Day 30 (Fig. 1). Between Days 30 and 40, a 53%
increase (P < 0.01) was observed in the expression of pla-
cental 118HSD-1 mRNA in al pig models (Fig. 1). No
differences (P = 0.45) were observed among the three
treatments (pig models).

On the contrary, 11HSD-2 mRNA expression was al-
ready readily apparent on Day 24 (Fig. 2). In contrast to
11BHSD-1, 118HSD-2 mRNA had four distinct bands (Fig.
2A). A decidedly major band (band A) was present at ap-
proximately 2.3 kb, with more minor bands occurring at
approximately 1.8, 1.5, and 1.2 kb. Statistical evaluations
were conducted on each individual band and on the sum of
the densitometric measurements for all bands. Analysis for
the major band is presented (Fig. 2B). For this major band,
ANOCVA did not reveal any treatment effects (P = 0.51)
or treatment X day interactions (P = 0.10), but it did dem-
onstrate marked day effects (P = 0.01) (Fig. 2B). These
day effects represent an increase in mRNA expression
across al treatments on Day 40 compared with Day 30 (P
= 0.005). A priori orthogonal contrasts indicate that on Day
30, 11BHSD-2 mRNA expression is lessin WC-UHO pigs
than in WC-INT pigs (P = 0.03). When the sum of bands
A through D is evaluated, the interpretation of resultsisthe
same (data not shown).

Placental 11BHSD dehydrogenase activity displayed
marked, day-dependent increases in activity between Days
30 and 40 of gestation (P = < 0.01) (Fig. 3). On Day 24
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FIG. 2. A) Northern blot analysis of placental 11BHSD-2 mRNA ex-
pression at Days 24, 30, and 40 of gestation. Each lane contained 10 pg
of total RNA. B) Results of densitometric analysis (ChemImager; Alpha
Innotech Corp., San Leandro, CA) of steady-state levels of placental
11BHSD-2 mRNA for only the major band in lane A. Values for 118HSD-
2 were adjusted by analysis of covariance to those of B-actin for the same
sample. Results represent the least-squares mean + SEM of the number
of replicates indicated by numbers within bars. Statistics were conducted
on log,,-transformed data. A priori orthogonal contrasts indicate that on
Day 30, 11BHSD-2 mRNA expression is less in WC-UHO pigs than in
WC-INT pigs (P = 0.03, a vs. b). WC-INT, intact white crossbred gilts;
WC-UHO, unilaterally-hysterectomized-ovariectomized white crossbred
gilts; ME, intact Meishan gilts.

(using an a priori orthogonal contrast), 118HSD dehydro-
genase activity in ME placentae was greater than in WC-
INT placentae on the same days (P < 0.037). Although
11BHSD-2 mRNA and dehydrogenase activity increased in
parallel between Days 30 and 40, ANOCVA procedures
using 11BHSD-2 mMRNA expression as a covariate did not
detect a significant linear relationship between dehydroge-
nase activity and mRNA expression as measured by the
most prominent band or by the sum of al bands (P > 0.47).

Expression of mRNA for GR was detected in placentae
at each stage of gestation (Fig. 4). Labeled cRNA hybrid-
ized with a mRNA of approximately 8.8 kb. An increase
(P = 0.013) was observed in GR expression with age that
was independent of treatment (P = 0.83) (Fig. 4B) and that
represented a 37% increase (P < 0.01) between Days 30
and 40. Placental B-actin expression was not affected by
treatment (P > 0.22).

DISCUSSION

In the present study, the findings of primary importance
are as follows: 1) 118HSD-2 mRNA expression and en-
zymatic activity are present within porcine placentae as ear-
ly as Day 24 of gestation; 2) placental 118HSD-1 mRNA
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FIG. 3. Effects of breed, uterine environment, and gestational age on

placental NAD*-dependent 11BHSD dehydrogenase activity under opti-
mal in vitro conditions of pH (9.0), coenzyme concentration (800 pM),
substrate concentration (2.5 wM plus 0.86 pCi [*H]cortisol), time (15
min), and temperature (37°C). Each bar represents the mean + SEM of
the number of pigs in parentheses. Statistics were conducted on square-
root-transformed data. A priori orthogonal contrasts show that this enzy-
matic activity was greater in Meishan placenta compared with WC-INT
placenta on Day 24 (P < 0.037, a vs. b). WC-INT, intact white crossbred
gilts; WC-UHO, unilaterally-hysterectomized-ovariectomized white
crossbred gilts; ME, intact Meishan gilts.

expression was not detected on Day 24 of gestation; 3) both
11BHSD-1 and 11BHSD-2 mRNA expression as well as
11BHSD dehydrogenase activity increased between Days
30 and 40 of gestation; 4) placental mMRNA expression of
GR was present as early as Day 24 of gestation, and this
expression increased with gestation; 5) 118HSD-2 mRNA
expression on Day 30 of gestation decreased in embryos of
WC-UHO gilts relative to WC-INT gilts; and 6) on Day 24
of gestation, placental 118HSD dehydrogenase activity was
greater in Meishan compared with WC-INT gilts.

For all speciesin which detailed studies have been con-
ducted, 11HSD-2 functions primarily as a dehydrogenase
(converts active cortisol to inactive cortisone) [27], and
11BHSD-1, athough capable of oxidative and reductive ac-
tivity, functions primarily as a reductase (converts cortisone
to cortisol) [27]. In the present study, we cannot say with
certainty that dehydrogenase activity represents only
11BHSD-2 function. However, the presence of 113HSD-2
MRNA expression and assumed (dehydrogenase) biological
activity at Day 24, aong with the absence of 118HSD-1
MRNA expression, suggest an importance for lower active
glucocorticoid concentrations in both placentae and embry-
os. This importance is further suggested by the decline in
placental 118HSD-2 mRNA expression on Day 30 of ges-
tation in embryos of WC-UHO gilts relative to WC-INT
gilts. It was previously shown that decreased embryonic
survival occurred in the crowded uterine environment on
Day 40 compared with Day 30, although placental weights
were not compromised [21]. However, more recent results
demonstrated 38% decreases (P = 0.01) in placental weight
on Day 35 in WC-UHO gilts [25].

The cause of decreased 118HSD-2 mRNA is unknown.
Of the mRNA measured (B-actin, GR, 11BHSD-1, and
11BHSD-2), only 11BHSD-2 mRNA expression differed
between WC-UHO and WC-INT gilts. This suggests a
specificity of response in terms of at least these limited
numbers of mMRNASs. Hence, lower 118HSD-2 at Day 30
may be associated with an increased number of compro-
mised embryos that will die by Day 40. Whether altered
placental 118HSD expression is one cause of subsequent
mortality, merely symptomatic of embryonic morbidity, or
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FIG. 4. A) Northern blot analysis of placental GR mRNA expression at
Days 24, 30, and 40 of gestation. Each lane contained 30 ug of total
RNA. B) Results of densitometric analysis (Epi Chemi Darkroom; UVP,
Inc., Upland, CA) of steady-state levels of placental GR mRNA expression.
Values for GR were adjusted by analysis of covariance to those of B-actin
for the same sample. Results represent the least-squares mean + SEM of
the number of replicates indicated by numbers within bars. Statistics were
conducted on log,,-transformed data. WC-INT, intact white crossbred
gilts; WC-UHO, unilaterally-hysterectomized-ovariectomized white
crossbred gilts; ME, intact Meishan gilts.

unrelated to mortality and morbidity, however, remains to
be determined. The 113HSD dehydrogenase activity was
not affected by the crowded uterine environment on Day
30, suggesting different sensitivities of mMRNA and active
protein to uterine crowding and associated biological alter-
ations. Depending on the half-life of the 113HSD-2 protein,
reduced mRNA expression would be expected to precede
a subsequently lowered activity. An alternative hypothesis
would be that 118HSD-1 protein is partially contributing
to measured dehydrogenase activity in addition to its re-
ductase activity. However, placental 118HSD-1 dehydro-
genase activity is NADP*-dependent [10, 12, 28], and in
the present assays, NAD+* was used as a coenzyme. Fur-
thermore, although intraplacental concentrations of cortisol
substrate are not known, plasma cortisol concentrations on
Days 16-18 of pregnancy vary from 10 to 38 ng/ml [29].
Embryonic cortisol concentrations on Day 25 are quite low
(~1.5 ng/mg DNA, or <10 ng cortisol/g tissue [17]). Such
cortisol concentrations are incompatible with the previously
measured K, of placental NADP*-dependent dehydroge-
nase activity (849 nM [12]). It is unlikely, therefore, that
placental 118HSD-1 provides a substantial contribution to
either measured or actual dehydrogenase activity at this
stage.

It is aso of interest to note the increased placental
11BHSD dehydrogenase activity in Meishan versus WC-
INT gilts. This is additional evidence for differencesin as-
pects of glucocorticoid concentrations or metabolism in
Meishan pigs during gestation [30] that could influence fe-
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tal development and survival. This finding is also contrary
to what one might anticipate if glucocorticoids were the
primary factor regulating fetal size; that is, with higher pla-
cental 11BHSD-2, one would expect lower fetal cortisol
and larger fetal weights [27, 31]. This might be especialy
true at Day 24, when cortisol impinging on the embryo is
predominantly of maternal origin [16, 32]. However, many
factors regulate fetal size (e.g., [33, 34]). Additionally, our
interpretation of the potential effects of glucocorticoids on
fetal size and the regulation of these effects by placental
11BHSD and GR are confounded in the present study by
an absence of information on embryonic glucocorticoid
regulatory mechanisms.

The present study demonstrates the presence in porcine
placentae of multiple transcripts of 118HSD-2 mRNA ex-
pression. The most prominent band occurred at approxi-
mately 2.3 kb. In mouse kidney and colon, multiple
11BHSD-2 mRNA transcripts were evident at approximate-
ly 5 and 2.0 kb [24]. In term human placentae, 118HSD-2
MRNA was present at 1.9 and 4.0 kb [35]. Hence, prece-
dents exist for multiple 113HSD-2 transcripts. However, in
other studies, only single transcripts of 118HSD-2 mRNA
were observed [36-38]. The biological relevance of these
various mMRNA species remains to be determined. For ex-
ample, which bands are translated into active protein is not
known, although it might be presumed that the major band
(2.3 kb) represents the mRNA that contributes most to ac-
tive protein. Mechanisms contributing to the various bands
may represent alternative cleavage and polyadenylation pat-
terns, alternative splicing of transcripts from a single gene,
or transcription from more than one gene. The specific
mechanism was not determined, but to date, evidence exists
for only one gene encoding 118HSD-2 in human tissues
[39].

Expression of 11HSD-1 mRNA was almost completely
absent in Day 24 placentae with the amount of total RNA
(10 p.g) used. Such absence on Day 24 again suggests an
additional mechanism by the developing placenta to mini-
mize exposure of the placenta and embryo to biologically
active glucocorticoids, because 11HSD-1 may serve to
amplify glucocorticoid action at the cellular level [40].

Day 24 of gestation—relative to term in pigs (114 days,
21% or 0.21 of gestation completed)—represents the ear-
liest measures of placental 118HSD mMRNA expression in
any species. Consequently, it is difficult to compare the
relative onset of MRNA expression of these enzymes in
pigs with those of other species. However, in human pla-
centa (8-12 wk, or ~0.21-0.32 of gestation), there was a
4% conversion of cortisone to cortisol (reductase activity),
but a 79% conversion of cortisol to cortisone (dehydroge-
nase activity [41]). In baboon placentae at early (0.33) ges-
tation, MRNA and protein expression for both isozymes
were present, and both increased with advancing gestation
[38]. However, to our knowledge, earlier ages have not
been measured. Therefore, the currently reported pattern of
initiation of 118HSD MRNA expression is most nearly sim-
ilar to that of enzymatic activities in humans at a compa-
rable age (relative to term). Although, as noted above, data
for oxoreductase activity were inconsistent, our measures
do indicate the existence of this activity and, thereby, sub-
stantiate that trandlation of this 118HSD-1 mRNA into bi-
ologically active protein does occur.

We have previously demonstrated that intrauterine cor-
tisol concentrations increase dramatically between Days 10
and 13 of pregnancy in gilts [42]. We have also demon-
strated the presence of low cortisol concentrations in por-
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cine embryos at Day 25 of gestation, with an 8-fold in-
crease occurring by Day 35 [16]. Hence, at these early ges-
tational stagesin pigs, cortisol is present in the environment
and in the embryos themselves, and it has the potential for
influencing development. The currently reported early ap-
pearance of GR mRNA expression—with the caveat that it
is trandated into active protein—further suggests the in-
volvement of glucocorticoids in early porcine placental de-
velopment and/or function and indirectly in embryonic de-
velopment. It has been previously suggested for other spe-
cies that the presence of placental 113HSD not only reflects
aregulation of transplacental passage of glucocorticoids but
also a local regulation of placental glucocorticoid actions
[43, 44]. Although only minimal indirect evidence existsin
pigs [45], abundant direct and indirect evidence indicates a
variety of effects of glucocorticoids on placental function
in other species (e.g., [46-48]). Therefore, the presence of
GR mRNA in the early porcine placenta is consistent with
data in other species for a function of cortisol in porcine
placentae.

The present study was not designed to evaluate the pla-
cental cellular location of either 11BHSD or GR mRNA
expression, as has been done for humans [38, 49, 50], ba-
boons [49], and rats [51]. In contrast to hemochorial pla-
centae of rat and humans, the porcine placentais epithelio-
chorial in nature. Such a placenta consists of an outer layer
of chorionic epithelial cells (trophectoderm) that contact the
uterine endometrial epithelium, a somatic mesodermal lay-
er, a splanchnic mesodermal layer, and finally, an inner thin
layer of entodermal cells [52]. Hence, our preparations con-
tained al these layers combined, and only by subsequent
use of immunohistochemical and in situ hybridization tech-
niques will it be possible to discern the cellular relation-
ships of these enzymatic and receptor regulators of gluco-
corticoid actions in the porcine placenta. Nonetheless, as
has been expressed for other species [44] and tissues [40],
the colocalization of 118HSD-1, 118HSD-2, and GR in the
porcine placenta suggests an intricate regulation of gluco-
corticoid action in this tissue at these early developmental
stages.

In summary, these studies demonstrate the presence of
11BHSD-1, 11BHSD-2, and GR mRNA expression as well
as 11BHSD dehydrogenase activity in porcine placentae.
Their presence suggests a role for glucocorticoids in por-
cine placental and embryonic development and function at
these early stages of gestation.
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